| 
 
	
		| View previous topic :: View next topic |  
		| Author | Message |  
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Thu Aug 30, 2012 4:45 pm    Post subject: Vanhegan extreme |   |  
				| 
 |  
				| Another one that I'm stuck on. This is puzzle #6-1645514, rated 2.2.0.1.1. 
 
  	  | Code: |  	  | +------------------+------------+-----------------+
 | 4     27  2679   | 17 69   3  | 2789  5    1289 |
 | 369   37  1      | 5  8    2  | 379   3467 349  |
 | 23569 8   235679 | 17 69   4  | 2379  2367 1239 |
 +------------------+------------+-----------------+
 | 7     6   234    | 8  245  9  | 1     234  2345 |
 | 129   5   29     | 3  124  7  | 6     8    24   |
 | 123   234 8      | 6  1245 15 | 235   9    7    |
 +------------------+------------+-----------------+
 | 358   347 3457   | 2  57   6  | 35789 1    3589 |
 | 256   1   2567   | 9  3    8  | 4     27   25   |
 | 2358  9   2357   | 4  157  15 | 23578 237  6    |
 +------------------+------------+-----------------+
 
 | 
 Play this puzzle online at the Daily Sudoku site
 |  |  
		| Back to top |  |  
		|  |  
		| arkietech 
 
 
 Joined: 31 Jul 2008
 Posts: 1834
 Location: Northwest Arkansas USA
 
 | 
			
				|  Posted: Fri Aug 31, 2012 5:20 pm    Post subject: |   |  
				| 
 |  
				| Couldn't break this one.  I was hoping someone else could. |  |  
		| Back to top |  |  
		|  |  
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Fri Aug 31, 2012 6:27 pm    Post subject: |   |  
				| 
 |  
				| Dan, did you by any chance do something to check if the grid is valid? |  |  
		| Back to top |  |  
		|  |  
		| JC Van Hay 
 
 
 Joined: 13 Jun 2010
 Posts: 494
 Location: Charleroi, Belgium
 
 | 
			
				|  Posted: Fri Aug 31, 2012 6:45 pm    Post subject: |   |  
				| 
 |  
				| Looking at the set of bivalues and bilocals, the candidates for the digits 4 and 1 are the "strongest" (see why !). Furthermore they are "coupled" in r5c5.
 Therefore, I suggest, as a hint, to investigate the consequences of assuming either 1r5c5 or 2r5c5 or 4r5c5 to be true.
 If you do so, you will save much time in the solving of this puzzle !
 
 Regards, JC.
 |  |  
		| Back to top |  |  
		|  |  
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Fri Aug 31, 2012 7:18 pm    Post subject: |   |  
				| 
 |  
				| I don't know if that is what JC had in mind, but looking at the 124 possibilities in r5c5, I found 4 to be invalid, and that was all that was needed. |  |  
		| Back to top |  |  
		|  |  
		| JC Van Hay 
 
 
 Joined: 13 Jun 2010
 Posts: 494
 Location: Charleroi, Belgium
 
 | 
			
				|  Posted: Sat Sep 01, 2012 7:37 am    Post subject: |   |  
				| 
 |  
				| Yes Marty. 
 With the bilocals on 4s and 1s, one can make 2 chains of length 4 and 2, a "Jellyfish" and a "Kite", respectively.
 As they are weakly coupled in r5c5, it is natural to begin the analysis of the puzzle from the cell r5c5 before investigating any other "weaker" patterns.
 
 r5c5=1->solution
 Or
 r5c5=2->contradiction after a cascade of singles
 or
 r5c5=4->contradiction after a cascade of singles while r5c9=4->solution
 
 It remains to find one chain to explain -4r5c5. The length of that chain should be the shortest, but this is not necessary.
 
 Example:
 
 
  	  | Code: |  	  | +--------------------------+------------------+---------------------+ | 4        27     2679     | 17  69      3    | 2789     5     1289 |
 | 69(3)    7(3)   1        | 5   8       2    | 379      3467  349  |
 | 2569(3)  8      2679(35) | 17  69      4    | 2379     2367  1239 |
 +--------------------------+------------------+---------------------+
 | 7        6      23(4)    | 8   245     9    | 1        234   2345 |
 | 129      5      29       | 3   12-4    7    | 6        8     (24) |
 | 12(3)    2(34)  8        | 6   125(4)  1(5) | 2(35)    9     7    |
 +--------------------------+------------------+---------------------+
 | 358      (347)  37(45)   | 2   (57)    6    | 3789(5)  1     3589 |
 | 256      1      267(5)   | 9   3       8    | 4        27    (25) |
 | 2358     9      237(5)   | 4   157     1(5) | 2378(5)  237   6    |
 +--------------------------+------------------+---------------------+
 
 Chain[11] : If r5c5=4, then [r5c9=2,r8c9=5=r6c7=r9c6,r7c5=7] and r6c2=4=r7c3;r6c1=3=r7c2,r3c3=5;no 3 in B1 => -4r5c5
 | 
 
 I hope that this way of writing the chain will seem easier to read than the corresponding "forbidding matrix", where no assumption is done, proving the derived SL 4r5c9=4r6c5 :=> -4r5c5.
 
 Note : the rating of this puzzle is SER=8.4, while the puzzles proposed on this site rarely exceed SER=7.1 !
 
 Regards, JC.
 |  |  
		| Back to top |  |  
		|  |  
		|  |  
  
	| 
 
 | You cannot post new topics in this forum You cannot reply to topics in this forum
 You cannot edit your posts in this forum
 You cannot delete your posts in this forum
 You cannot vote in polls in this forum
 
 |  
 Powered by phpBB © 2001, 2005 phpBB Group
 
 |