| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		peterj
 
 
  Joined: 26 Mar 2010 Posts: 974 Location: London, UK
  | 
		
			
				 Posted: Wed Dec 08, 2010 6:13 pm    Post subject: Krampus Edition - "?" #1 | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		   *-----------*
 
 |.6.|94.|...|
 
 |...|..2|3..|
 
 |132|...|..4|
 
 |---+---+---|
 
 |...|1..|8..|
 
 |3..|...|..2|
 
 |..5|..7|...|
 
 |---+---+---|
 
 |2..|...|463|
 
 |..8|2..|...|
 
 |...|.59|.7.|
 
 *-----------* | 	  
 
 	  | Code: | 	 		  | 060940000000002300132000004000100800300000002005007000200000463008200000000059070 | 	  
 
(c) Helmut Saueregger | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Thu Dec 09, 2010 7:55 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		  +---------------+-----------------+-----------------+
 
| 8    6      7 | 9     4    3    | 15     2   15   |
 
| 5    9      4 | 7(6)  1    2    | 3      8   7(6) |
 
| 1    3      2 | 5678  678  568  | (67)   9   4    |
 
+---------------+-----------------+-----------------+
 
| 479  247    6 | 1     29   45   | 8      3   579  |
 
| 3    48(7)  1 | 4568  689  4568 | 59(7)  45  2    |
 
| 49   28     5 | 3     28   7    | 169    14  169  |
 
+---------------+-----------------+-----------------+
 
| 2    5      9 | 78    78   1    | 4      6   3    |
 
| 467  (47)   8 | 2     3    6-4  | 159    15  159  |
 
| 6-4  1      3 | (46)  5    9    | 2      7   8    |
 
+---------------+-----------------+-----------------+ | 	  
 
#1...(4=6)r9c4 - (6)r2c4 = (6)r2c9 - (6=7)r3c7 - (7)r5c8 = (7)r5c2 - (7=4)r8c2;
 
r9c1 <> 4
 
r8c6 <> 4
 
 
 	  | Code: | 	 		  +---------------+------------------+------------------+
 
| 8      6    7 | 9     4     3    | 15   2     15    |
 
| 5      9    4 | 67    1     2    | 3    8     67    |
 
| 1      3    2 | 5678  67-8  (58) | 67   9     4     |
 
+---------------+------------------+------------------+
 
| 47(9)  247  6 | 1     (29)  4(5) | 8    3     79(5) |
 
| 3      478  1 | 568   689   45-8 | 579  4(5)  2     |
 
| (49)   28   5 | 3     (28)  7    | 169  (14)  169   |
 
+---------------+------------------+------------------+
 
| 2      5    9 | 78    78    1    | 4    6     3     |
 
| 47     47   8 | 2     3     6    | 159  (15)  159   |
 
| 6      1    3 | 4     5     9    | 2    7     8     |
 
+---------------+------------------+------------------+ | 	  
 
#2...(8=2)R6C5 - (2=9)R4C5 - (9)R4C1 = (9-4)R6C1 = (4-1)R6C8 = (1-5)R8C8 = (5)R5C8 - (5)R4C9 = (5)R4C6 - (5=8)R3C6;
 
R3C5 <> 8
 
R5C6 <> 8
 
 
 	  | Code: | 	 		  +--------------+--------------+---------------+
 
| 8    6     7 | 9   4     3  | 15    2   15  |
 
| 5    9     4 | 67  1     2  | 3     8   67  |
 
| 1    3     2 | 5   6-7   8  | 6(7)  9   4   |
 
+--------------+--------------+---------------+
 
| 479  247   6 | 1   29    45 | 8     3   579 |
 
| 3    (78)  1 | 68  689   45 | 9(7)  45  2   |
 
| 49   2(8)  5 | 3   2(8)  7  | 169   14  169 |
 
+--------------+--------------+---------------+
 
| 2    5     9 | 78  (78)  1  | 4     6   3   |
 
| 47   47    8 | 2   3     6  | 159   15  159 |
 
| 6    1     3 | 4   5     9  | 2     7   8   |
 
+--------------+--------------+---------------+ | 	  
 
#3... (7=8)R7C5 - (8)R6C5 = (8)R6C2 - (8=7)R5C2 - (7)R5C7 = (7)R3C7; R3C5 <> 7 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		peterj
 
 
  Joined: 26 Mar 2010 Posts: 974 Location: London, UK
  | 
		
			
				 Posted: Thu Dec 09, 2010 2:42 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				A lucky find on an m-wing with an ANT instead of bivalue...
 
  	  | Code: | 	 		   *-------------------------------------------------------------*
 
 | 8     6     7     | 9     4       3     | (15)  2     15    |
 
 | 5     9     4     | 67    1       2     | 3     8     67    |
 
 | 1     3     2     | 5678  (6)78   568   | 7-6   9     4     |
 
 |-------------------+---------------------+-------------------|
 
 | 479   247   6     | 1     29      45    | 8     3     579   |
 
 | 3     478   1     | 4568  (6)8(9) 4568  | 57(9) 45    2     |
 
 | 49    28    5     | 3     28      7     | (169) 14    169   |
 
 |-------------------+---------------------+-------------------|
 
 | 2     5     9     | 78    78      1     | 4     6     3     |
 
 | 467   47    8     | 2     3       46    | (159) 15    159   |
 
 | 46    1     3     | 46    5       9     | 2     7     8     |
 
 *-------------------------------------------------------------*
 
 
 ANT(6=159)r168c7 - (9)r5c7=(9-6)r5c5=r3c5 ; r3c7<>6 | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Thu Dec 09, 2010 7:12 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Peter, you came thiiiissss close to catching ronk's pattern for an L3-Wing: X=6, Y=9, Z=7
 
 
 	  | Code: | 	 		  L2-Wing:  (X)a = (X)b - (X)c = (X-Y)d = (Y)e     "a" and "e" in same house; a<>Y, e<>X
 
L3-Wing:  (X)a = (X   -  Y)b = (Y-Z)c = (Z)d     "a" and "d" in same house; a<>Y, d<>X
 
 | 	  
 
I stumbled across it while reviewing the chains listed by my solver.
 
(I don't have it specifically programmed into my MWSL-Wing finder program.)
 
 
Regards, Danny | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		peterj
 
 
  Joined: 26 Mar 2010 Posts: 974 Location: London, UK
  | 
		
			
				 Posted: Thu Dec 09, 2010 8:19 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | daj95376 wrote: | 	 		  | Peter, you came thiiiissss close to catching ronk's pattern for an L3-Wing | 	  
 
Well, I can see it now you point it out! 
 
 
My head is still looking for two candidate m-wing like patterns and then I scavenge around for a bivalue, then a "pseudocell"/short xy-chain then an ALS - in order to create the A=B strong link to finish it off!
 
 
Looking for a strong-link on a third candidate will have to be next on the checklist! | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Thu Dec 09, 2010 8:52 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Peter, I'm terrible at finding patterns ... let alone chains. That's why I wrote my solver -- to have it show me the simple chains that I'd never find on my own.
 
 
That said, wait until you see the ridiculous solution that I'm about to post for "?" #2. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Fri Dec 10, 2010 3:40 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		   *-----------------------------------------------------------*
 
 | 8     6     7     | 9     4     3     | 15    2     15    |
 
 | 5     9     4     | 67    1     2     | 3     8     67    |
 
 | 1     3     2     | 5678  678   568   | 67    9     4     |
 
 |-------------------+-------------------+-------------------|
 
 | 479   247   6     | 1     29   d45    | 8     3     579   |
 
 | 3     478   1     | 4568  689  d4568  | 579   45    2     |
 
 | 49    28    5     | 3     28    7     | 169   14    169   |
 
 |-------------------+-------------------+-------------------|
 
 | 2     5     9     | 78    78    1     | 4     6     3     |
 
 | 467   47    8     | 2     3    c46    | 159   15    159   |
 
 |a46    1     3     |b46    5     9     | 2     7     8     |
 
 *-----------------------------------------------------------* | 	  
 
I need help to describe this move. I started looking at a possible m-wing in abcd: (4=6)r9c1-r9c4=(6-4)r8c6=(4)r45c6. Thus either r4c6=4 or r5c6=4, which act as a pincer with (4)r9c1.
 
 
I then extended the beginning of the chain: (4)r9c1-r6c1=r6c8-(4=5)r5c8-r5c46=(5)r4c6 which forces r5c6=4
 
 
How do I combine these two steps into an AIC that is meaningful?
 
 
Ted
 
 
P. S. A BUG+2 that forces r5c4=6 is needed to complete the puzzle. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Fri Dec 10, 2010 5:17 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | tlanglet wrote: | 	 		   	  | Code: | 	 		   *-----------------------------------------------------------*
 
 | 8     6     7     | 9     4     3     | 15    2     15    |
 
 | 5     9     4     | 67    1     2     | 3     8     67    |
 
 | 1     3     2     | 5678  678   568   | 67    9     4     |
 
 |-------------------+-------------------+-------------------|
 
 | 479   247   6     | 1     29   d45    | 8     3     579   |
 
 | 3     478   1     | 4568  689  d4568  | 579   45    2     |
 
 | 49    28    5     | 3     28    7     | 169   14    169   |
 
 |-------------------+-------------------+-------------------|
 
 | 2     5     9     | 78    78    1     | 4     6     3     |
 
 | 467   47    8     | 2     3    c46    | 159   15    159   |
 
 |a46    1     3     |b46    5     9     | 2     7     8     |
 
 *-----------------------------------------------------------* | 	  
 
I need help to describe this move. I started looking at a possible m-wing in abcd: (4=6)r9c1-r9c4=(6-4)r8c6=(4)r45c6. Thus either r4c6=4 or r5c6=4, which act as a pincer with (4)r9c1.
 
 
I then extended the beginning of the chain: (4)r9c1-r6c1=r6c8-(4=5)r5c8-r5c46=(5)r4c6 which forces r5c6=4
 
 
How do I combine these two steps into an AIC that is meaningful?
 
 | 	  
 
I don't agree with the part in red above. If I were to join your chains into a single AIC, the logic would boil down to:
 
 
if r4c6=4 then ( r4c6=4 or r5c6=4) -- which is meaningless.
 
 
The wrinkle in your logic is that the extension forces r5c6=4 or r5c4=4. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Fri Dec 10, 2010 1:26 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Danny,
 
 
I wondered about the validity of my conclusion, but convinced myself it was OK. Maybe next time I will get it correct.................
 
 
Ted | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |